Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(32)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163999

RESUMO

The microwave detection capability of GaN-based asymmetric planar nanodiodes (so-called Self-Switching Diode, SSD, due to its non-linearity) has been characterized in a wide temperature range, from 70 K up to 300 K. At low temperature, microwave measurements reveal an enhancement of the responsivity at frequencies below 1 GHz, which, together with a pronounced hysteresis in the DC curves, indicate a significant influence of the surface states. This leads to a significant variability and non-repeatability which needs to be reduced since it degrades the accuracy of the detection. For this sake, the RF characterization was repeated after applying a positive/negative voltage able to fill/empty the surface states in order to have a well-established preconditioned state. As a consequence of the positive pre-soak bias, a significant enhancement of the measured responsivity, with a × 10 increase at low temperature. The RF detection measurements after such preconditioning contains a time dependence induced by the slow discharge mechanism of the traps, so that the improved responsivity remains even after 100s of seconds. On the other hand, a negative voltage pre-soak benefits the discharge process, thus suppressing the low frequency dispersion and the important variability of the detection without the pre-conditioning step. We also show that the relation between the voltage and current responsivities in each case allows to explain the impact of the surface charges in terms of the device impedance.

2.
Nanotechnology ; 31(40): 405204, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32544891

RESUMO

The zero-bias microwave detection capability of self-switching diodes (SSDs) based on AlGaN/GaN is analyzed in a wide temperature range, from 10 K to 300 K. The measured responsivity shows an anomalous enhancement at low temperature, while the detected voltage exhibits a roll-off in frequency, which can be attributed to the presence of surface and bulk traps. To gain a deep insight into this behavior, a systematic DC and AC characterization of the diodes has been carried out in the mentioned temperature range. DC results confirm the existence of traps and AC measurements allow us to identify their properties. In particular, impedance studies enable to distinguish two types of traps: at the lateral surfaces of the channel, with a wide spread of relaxation times, and in the bulk.

3.
Nanotechnology ; 26(48): 485202, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26553008

RESUMO

This paper presents a comprehensive study of the behavior of surface charges in ballistic deflection transistors, at room temperature, where the in-plane geometry associating two drains with two gates in push-pull modes allows the control of electron path. Monte Carlo simulations were performed and compared with experimental data by using different models for accounting for surface charge effects. The simple model which assumes a constant and uniform value of the surface charge provides good results at equilibrium, but it is not able to correctly reproduce the BDT's complex behavior when biased. We have confirmed that for a correct description of the device operation it is necessary to use a model allowing the surface charge to adapt itself locally to the carrier concentration in its surroundings.

4.
Nat Mater ; 14(2): 187-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384166

RESUMO

Thermal dissipation at the active region of electronic devices is a fundamental process of considerable importance. Inadequate heat dissipation can lead to prohibitively large temperature rises that degrade performance, and intensive efforts are under way to mitigate this self-heating. At room temperature, thermal resistance is due to scattering, often by defects and interfaces in the active region, that impedes the transport of phonons. Here, we demonstrate that heat dissipation in widely used cryogenic electronic devices instead occurs by phonon black-body radiation with the complete absence of scattering, leading to large self-heating at cryogenic temperatures and setting a key limit on the noise floor. Our result has important implications for the many fields that require ultralow-noise electronic devices.

5.
Nanotechnology ; 22(44): 445203, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21990212

RESUMO

The understanding of the influence of surface charge effects on the electrical properties of nanostructures is a key aspect for the forthcoming generations of electronic devices. In this paper, by using an ultrafast electrical pulse characterization technique, we report on the room-temperature time response of a T-branch nanojunction which allows us to identify the signature of surface states. Different pulse widths from 500 ns to 100 µs were applied to the device. For a given pulse width, the stem voltage is measured and compared with the DC result. The output value in the stem is found to depend on the pulse width and to be related to the characteristic charging time of the interface states. As expected, the results show that the well-known nonlinear response of T-branch junctions is more pronounced for long pulses, beyond such a characteristic time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...